Contents

mysql索引篇

索引常见面试题

索引的分类

按数据结构分

./mysql索引篇.assets/索引分类.drawio.png

创建的主键索引和二级索引默认使用的是 B+Tree 索引

./mysql索引篇.assets/btree.drawio.png

B+Tree 存储千万级的数据只需要 3-4 层高度就可以满足,这意味着从千万级的表查询目标数据最多需要 3-4 次磁盘 I/O,所以B+Tree 相比于 B 树和二叉树来说,最大的优势在于查询效率很高,因为即使在数据量很大的情况,查询一个数据的磁盘 I/O 依然维持在 3-4次。

./mysql索引篇.assets/二级索引btree.drawio.png

二级索引检索时,先检二级索引中的 B+Tree 的索引值(商品编码,product_no),找到对应的叶子节点,然后获取主键值,然后再通过主键索引中的 B+Tree 树查询到对应的叶子节点,然后获取整行数据。这个过程叫「回表」,也就是说要查两个 B+Tree 才能查到数据

当查询的数据是能在二级索引的 B+Tree 的叶子节点里查询到,这时就不用再查主键索引查,比如下面这条查询语句:

select id from product where product_no = '0002';

这种在二级索引的 B+Tree 就能查询到结果的过程就叫作「覆盖索引」,也就是只需要查一个 B+Tree 就能找到数据

按物理存储分类

从物理存储的角度来看,索引分为聚簇索引(主键索引)、二级索引(辅助索引)。

这两个区别在前面也提到了:

  • 主键索引的 B+Tree 的叶子节点存放的是实际数据,所有完整的用户记录都存放在主键索引的 B+Tree 的叶子节点里;
  • 二级索引的 B+Tree 的叶子节点存放的是主键值,而不是实际数据。

按字段特性分类

从字段特性的角度来看,索引分为主键索引、唯一索引、普通索引、前缀索引。

主键索引

主键索引就是建立在主键字段上的索引,通常在创建表的时候一起创建,一张表最多只有一个主键索引,索引列的值不允许有空值。

唯一索引

唯一索引建立在 UNIQUE 字段上的索引,一张表可以有多个唯一索引,索引列的值必须唯一,但是允许有空值。

在创建表时,创建唯一索引的方式如下:

CREATE TABLE table_name  (
  ....
  UNIQUE KEY(index_column_1,index_column_2,...) 
);

普通索引

普通索引就是建立在普通字段上的索引,既不要求字段为主键,也不要求字段为 UNIQUE。

在创建表时,创建普通索引的方式如下:

CREATE TABLE table_name  (
  ....
  INDEX(index_column_1,index_column_2,...) 
);

前缀索引

前缀索引是指对字符类型字段的前几个字符建立的索引,而不是在整个字段上建立的索引,前缀索引可以建立在字段类型为 char、 varchar、binary、varbinary 的列上。

使用前缀索引的目的是为了减少索引占用的存储空间,提升查询效率。

在创建表时,创建前缀索引的方式如下:

CREATE TABLE table_name(
    column_list,
    INDEX(column_name(length))
); 

按字段个数分类

  • 建立在单列上的索引称为单列索引,比如主键索引;
  • 建立在多列上的索引称为联合索引;

./mysql索引篇.assets/联合索引.drawio.png

使用联合索引时,存在最左匹配原则,也就是按照最左优先的方式进行索引的匹配。在使用联合索引进行查询的时候,如果不遵循「最左匹配原则」,联合索引会失效,这样就无法利用到索引快速查询的特性了。

比如,如果创建了一个 (a, b, c) 联合索引,如果查询条件是以下这几种,就可以匹配上联合索引:

  • where a=1;
  • where a=1 and b=2 and c=3;
  • where a=1 and b=2;

需要注意的是,因为有查询优化器,所以 a 字段在 where 子句的顺序并不重要。

但是,如果查询条件是以下这几种,因为不符合最左匹配原则,所以就无法匹配上联合索引,联合索引就会失效:

  • where b=2;
  • where c=3;
  • where b=2 and c=3;

上面这些查询条件之所以会失效,是因为(a, b, c) 联合索引,是先按 a 排序,在 a 相同的情况再按 b 排序,在 b 相同的情况再按 c 排序。所以,b 和 c 是全局无序,局部相对有序的,这样在没有遵循最左匹配原则的情况下,是无法利用到索引的。

联合索引范围查询

联合索引有一些特殊情况,并不是查询过程使用了联合索引查询,就代表联合索引中的所有字段都用到了联合索引进行索引查询,也就是可能存在部分字段用到联合索引的 B+Tree,部分字段没有用到联合索引的 B+Tree 的情况。

这种特殊情况就发生在范围查询。联合索引的最左匹配原则会一直向右匹配直到遇到「范围查询」就会停止匹配。也就是范围查询的字段可以用到联合索引,但是在范围查询字段的后面的字段无法用到联合索引

Q1: select * from t_table where a > 1 and b = 2,联合索引(a, b)哪一个字段用到了联合索引的 B+Tree?

由于联合索引(二级索引)是先按照 a 字段的值排序的,所以符合 a > 1 条件的二级索引记录肯定是相邻,于是在进行索引扫描的时候,可以定位到符合 a > 1 条件的第一条记录,然后沿着记录所在的链表向后扫描,直到某条记录不符合 a > 1 条件位置。所以 a 字段可以在联合索引的 B+Tree 中进行索引查询。

但是在符合 a > 1 条件的二级索引记录的范围里,b 字段的值是无序的。比如前面图的联合索引的 B+ Tree 里,下面这三条记录的 a 字段的值都符合 a > 1 查询条件,而 b 字段的值是无序的:

因此,我们不能根据查询条件 b = 2 来进一步减少需要扫描的记录数量(b 字段无法利用联合索引进行索引查询的意思)。

所以在执行 Q1 这条查询语句的时候,对应的扫描区间是 (2, + ∞),形成该扫描区间的边界条件是 a > 1,与 b = 2 无关。

索引下推

现在我们知道,对于联合索引(a, b),在执行 select * from table where a > 1 and b = 2 语句的时候,只有 a 字段能用到索引,那在联合索引的 B+Tree 找到第一个满足条件的主键值(ID 为 2)后,还需要判断其他条件是否满足(看 b 是否等于 2),那是在联合索引里判断?还是回主键索引去判断呢?

  • 在 MySQL 5.6 之前,只能从 ID2 (主键值)开始一个个回表,到「主键索引」上找出数据行,再对比 b 字段值。
  • 而 MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在联合索引遍历过程中,对联合索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数

索引区分度

建立联合索引时,要把区分度大的字段排在前面,这样区分度大的字段越有可能被更多的 SQL 使用到

区分度就是某个字段 column 不同值的个数「除以」表的总行数,计算公式如下:

./mysql索引篇.assets/区分度.png

MySQL 还有一个查询优化器,查询优化器发现某个值出现在表的数据行中的百分比(惯用的百分比界线是"30%")很高的时候,它一般会忽略索引,进行全表扫描

联合索引进行排序

针对针对下面这条 SQL,你怎么通过索引来提高查询效率呢?

select * from order where status = 1 order by create_time asc

有的同学会认为,单独给 status 建立一个索引就可以了。

但是更好的方式给 status 和 create_time 列建立一个联合索引,因为这样可以避免 MySQL 数据库发生文件排序。

什么时候需要/不需要索引

索引也是有缺点的,比如:

  • 需要占用物理空间,数量越大,占用空间越大;
  • 创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增大;
  • 会降低表的增删改的效率,因为每次增删改索引,B+ 树为了维护索引有序性,都需要进行动态维护。

什么时候适用索引?

  • 字段有唯一性限制的,比如商品编码;
  • 经常用于 WHERE 查询条件的字段,这样能够提高整个表的查询速度,如果查询条件不是一个字段,可以建立联合索引。
  • 经常用于 GROUP BYORDER BY 的字段,这样在查询的时候就不需要再去做一次排序了,因为我们都已经知道了建立索引之后在 B+Tree 中的记录都是排序好的

什么时候不需要创建索引?

  • WHERE 条件,GROUP BYORDER BY 里用不到的字段,索引的价值是快速定位,如果起不到定位的字段通常是不需要创建索引的,因为索引是会占用物理空间的。
  • 字段中存在大量重复数据,不需要创建索引,比如性别字段,只有男女,如果数据库表中,男女的记录分布均匀,那么无论搜索哪个值都可能得到一半的数据。在这些情况下,还不如不要索引,因为 MySQL 还有一个查询优化器,查询优化器发现某个值出现在表的数据行中的百分比很高的时候,它一般会忽略索引,进行全表扫描。
  • 表数据太少的时候,不需要创建索引;
  • 经常更新的字段不用创建索引,比如不要对电商项目的用户余额建立索引,因为索引字段频繁修改,由于要维护 B+Tree的有序性,那么就需要频繁的重建索引,这个过程是会影响数据库性能的。

有什么优化索引的方法?

  • 前缀索引优化;
  • 覆盖索引优化;
  • 主键索引最好是自增的;
  • 防止索引失效;

前缀索引优化

使用前缀索引是为了减小索引字段大小,可以增加一个索引页中存储的索引值,有效提高索引的查询速度。在一些大字符串的字段作为索引时,使用前缀索引可以帮助我们减小索引项的大小。

不过,前缀索引有一定的局限性,例如:

  • order by 就无法使用前缀索引;
  • 无法把前缀索引用作覆盖索引;

覆盖索引优化

覆盖索引是指 SQL 中 query 的所有字段,在索引 B+Tree 的叶子节点上都能找得到的那些索引,从二级索引中查询得到记录,而不需要通过聚簇索引查询获得,可以避免回表的操作。

假设我们只需要查询商品的名称、价格,有什么方式可以避免回表呢?

我们可以建立一个联合索引,即「商品ID、名称、价格」作为一个联合索引。如果索引中存在这些数据,查询将不会再次检索主键索引,从而避免回表。

主键索引最好是自增的

如果我们使用自增主键,那么每次插入的新数据就会按顺序添加到当前索引节点的位置,不需要移动已有的数据,当页面写满,就会自动开辟一个新页面。因为每次插入一条新记录,都是追加操作,不需要重新移动数据,因此这种插入数据的方法效率非常高。

如果我们使用非自增主键,由于每次插入主键的索引值都是随机的,因此每次插入新的数据时,就可能会插入到现有数据页中间的某个位置,这将不得不移动其它数据来满足新数据的插入,甚至需要从一个页面复制数据到另外一个页面,我们通常将这种情况称为页分裂页分裂还有可能会造成大量的内存碎片,导致索引结构不紧凑,从而影响查询效率

另外,主键字段的长度不要太大,因为主键字段长度越小,意味着二级索引的叶子节点越小(二级索引的叶子节点存放的数据是主键值),这样二级索引占用的空间也就越小

索引最好设置为 NOT NULL

为了更好的利用索引,索引列要设置为 NOT NULL 约束。有两个原因:

  • 第一原因:索引列存在 NULL 就会导致优化器在做索引选择的时候更加复杂,更加难以优化,因为可为 NULL 的列会使索引、索引统计和值比较都更复杂,比如进行索引统计时,count 会省略值为NULL 的行。
  • 第二个原因:NULL 值是一个没意义的值,但是它会占用物理空间,所以会带来的存储空间的问题,因为 InnoDB 存储记录的时候,如果表中存在允许为 NULL 的字段,那么行格式 (opens new window)至少会用 1 字节空间存储 NULL 值列表

防止索引失效

  • 当我们使用左或者左右模糊匹配的时候,也就是 like %xx 或者 like %xx%这两种方式都会造成索引失效;
  • 当我们在查询条件中对索引列做了计算、函数、类型转换操作,这些情况下都会造成索引失效;
  • 联合索引要能正确使用需要遵循最左匹配原则,也就是按照最左优先的方式进行索引的匹配,否则就会导致索引失效。
  • 在 WHERE 子句中,如果在 OR 前的条件列是索引列,而在 OR 后的条件列不是索引列,那么索引会失效。

./mysql索引篇.assets/798ab1331d1d6dff026e262e788f1a28.png

对于执行计划,参数有:

  • possible_keys 字段表示可能用到的索引;
  • key 字段表示实际用的索引,如果这一项为 NULL,说明没有使用索引;
  • key_len 表示索引的长度;
  • rows 表示扫描的数据行数。
  • type 表示数据扫描类型,我们需要重点看这个。

type 字段就是描述了找到所需数据时使用的扫描方式是什么,常见扫描类型的执行效率从低到高的顺序为

  • All(全表扫描);
  • index(全索引扫描);
  • range(索引范围扫描);
  • ref(非唯一索引扫描);
  • eq_ref(唯一索引扫描);
  • const(结果只有一条的主键或唯一索引扫描)。

在这些情况里,all 是最坏的情况,因为采用了全表扫描的方式。index 和 all 差不多,只不过 index 对索引表进行全扫描,这样做的好处是不再需要对数据进行排序,但是开销依然很大。所以,要尽量避免全表扫描和全索引扫描。

range 表示采用了索引范围扫描,一般在 where 子句中使用 < 、>、in、between 等关键词,只检索给定范围的行,属于范围查找。从这一级别开始,索引的作用会越来越明显,因此我们需要尽量让 SQL 查询可以使用到 range 这一级别及以上的 type 访问方式

ref 类型表示采用了非唯一索引,或者是唯一索引的非唯一性前缀,返回数据返回可能是多条。因为虽然使用了索引,但该索引列的值并不唯一,有重复。这样即使使用索引快速查找到了第一条数据,仍然不能停止,要进行目标值附近的小范围扫描。但它的好处是它并不需要扫全表,因为索引是有序的,即便有重复值,也是在一个非常小的范围内扫描。

eq_ref 类型是使用主键或唯一索引时产生的访问方式,通常使用在多表联查中。比如,对两张表进行联查,关联条件是两张表的 user_id 相等,且 user_id 是唯一索引,那么使用 EXPLAIN 进行执行计划查看的时候,type 就会显示 eq_ref。

const 类型表示使用了主键或者唯一索引与常量值进行比较,比如 select name from product where id=1。

需要说明的是 const 类型和 eq_ref 都使用了主键或唯一索引,不过这两个类型有所区别,const 是与常量进行比较,查询效率会更快,而 eq_ref 通常用于多表联查中

除了关注 type,我们也要关注 extra 显示的结果。

这里说几个重要的参考指标:

  • Using filesort :当查询语句中包含 group by 操作,而且无法利用索引完成排序操作的时候, 这时不得不选择相应的排序算法进行,甚至可能会通过文件排序,效率是很低的,所以要避免这种问题的出现。
  • Using temporary:使了用临时表保存中间结果,MySQL 在对查询结果排序时使用临时表,常见于排序 order by 和分组查询 group by。效率低,要避免这种问题的出现。
  • Using index:所需数据只需在索引即可全部获得,不须要再到表中取数据,也就是使用了覆盖索引,避免了回表操作,效率不错。

内容来源自小林coding图解MySQL介绍 | 小林coding ,仅个人学习使用,侵权请联系删除。